からのクルマや電子機器の軽量化
化に必須！
異種材料接着・接合技術の
基礎と
接着設計・評価の具体的手
法
～接着力の原理から最適接着～

接合法と表面処理法の
選定、強度・信頼性・耐久性の
評価、トラブル対策まで

開催主旨

燃費向上が要求される自動車分野に加
え、電気電子分野においても製造工程の
簡素化を目的に、製品強度を維持しつつ
軽量化が求められています。これに伴
い、鋼材やアルミニウムなどの異種金属
や金属とプラスチック、金属とゴムと
いった異種材料接着・接合技術の重要
性が注目されています。
そこで、本講座は高信頼かつ長寿命の接
着・接合製品の設計に向け、接着の原理
から接着剤および表面処理の選定法、異
種材料の接着の基礎、さらには樹脂射出
一体成形法やレーザ接合法、化学反応
法など最新の接合法まで解説します。
また、各種接着に発生する応力分布・変
形および破壊条件の解析法、それにもと
づく強力接着構造の設計法や、負荷応力
の時間的分布と接着強度のばらつきにも
とづく、ストレス強度モデルによる繰り
返し希望破壊確率を与える安全率の計算

概要

本セミナーは大変盛況の内に終了いたしました。

| 日時 | 2017年6月22日（木）10：00
 | 17：00
 | 9：30受付開始、昼食休憩
 | 12：30〜13：30 |

| 会場 | 日刊工業新聞社 東京本社 メニ
 | ナールーム |

| 受講料 | 43,200円（資料代、消費税込）
 | 1社複数名のご参加の場合、2
 | 人目より10％割引（38,880円）
 | 委託 |

| 注意 |
| ～セミナー終了後、資料を破棄
 | 基本 |

本セミナーは大変盛況の内に終了いたしました。
法、温度や湿度、機械的応力などのストレッスと劣化速度との理論的関係および、それにもとづく加速試験による寿命予測法も解説。さらに、各種接着強度評価法や接着トラブル事例、その原因別分類と対策についても、講師の実務経験を通じて解説します。

本セミナーの講義資料は、開催3日前にデータで事前配布します。メールアドレスをご明記ください。

このセミナーを申し込む

プログラム

1. 接着力発現の原理

2. 各接着材に適した接着剤の選定法

3. 接着剤の種類、特徴および最適接着剤の選定法

4. 被着材に対する表面処理法の選定法

5. 最新の異種材料接合法

6. 刺出成形および溶着における接着力発現のメカニズム

7. 接着継手形式および荷重外力の種類
<table>
<thead>
<tr>
<th>8．各織維の応力分布および強度評価</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-1 重ね合わせ織り</td>
</tr>
<tr>
<td>8-2 結合力モデル（Cohesive Zone Model：CZM）解析法と混合モード破壊クリティリオンを用いた</td>
</tr>
<tr>
<td>単純重ね合わせ織りの挙動の解析例</td>
</tr>
<tr>
<td>8-3 スカーフおよびパック接合織りのFEM応力解析および混合モード条件条件の破壊条件</td>
</tr>
<tr>
<td>8-4 特異応力場の強さを用いたパック織りおよびスカーフ織りの引張接合強度の評価例</td>
</tr>
<tr>
<td>8-5 刺骨応力の解析</td>
</tr>
<tr>
<td>8-6 スポット溶接 - 接着を用い織りのFEM応力解析結果</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9．最適接合部の設計</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>10．経年劣化（強度低下およびばらつき増加）による 故障率の増加（ストレス - 強度のモデル）</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>11．所定年数使用後の接着接合部に要求される 故障確率確保に必要な安全率の計算法</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-1 正規分布について</td>
</tr>
<tr>
<td>11-2 負荷応力（ストレス）が一定値の場合の安全率の計算法</td>
</tr>
<tr>
<td>11-3 負荷応力（ストレス）が分布する場合の安全率の計算法</td>
</tr>
<tr>
<td>11-4 航空機において安全率が小さく取られる理由（強度のばらつきと故障率との関係）</td>
</tr>
<tr>
<td>11-5 各種接合織りの静的強度の変動係数実験値</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12．接合接合部劣化の三大要因（温度、湿度、水分、応力）</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>13．アレニウスモデル（温度条件）による 耐久性加速試験および寿命推定法</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>14．アイリングモーダルおよびジューコフモーダルによる応力</th>
</tr>
</thead>
<tbody>
<tr>
<td>および湿度負荷条件下の耐久性加速試験および寿命推定法</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15．接着接合の耐水性および耐油性の熱力学的検討および耐水性向上法</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>16．接合接合部の破壊試験方法および破壊試験結果</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>17．接合接合部のクリープ破壊強度およびクリープ試験方法</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>18．接合トラブルの原因別類別と対策</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-1 原因別類別とその対策（表）</td>
</tr>
<tr>
<td>18-2 各種トラブル事例の原因と対策</td>
</tr>
</tbody>
</table>

このセミナーを申し込む

一覧へ戻る
<table>
<thead>
<tr>
<th>日刊工業新聞電子版について</th>
<th>日刊工業新聞社について</th>
<th>日刊工業新聞社の使い方ガイド</th>
</tr>
</thead>
<tbody>
<tr>
<td>総合ガイド</td>
<td>日刊工業新聞社コーポレートサイト</td>
<td>知りたい</td>
</tr>
<tr>
<td>利用規約</td>
<td>会社概要</td>
<td>発信したい</td>
</tr>
<tr>
<td>プライバシーポリシー</td>
<td>Company Profile (English)</td>
<td>ネットワークに</td>
</tr>
<tr>
<td>特定個人情報に関する基本方針</td>
<td>企業理念</td>
<td>参加したい</td>
</tr>
<tr>
<td>ソーシャルメディアポリシー</td>
<td>事業紹介</td>
<td>人材を育てたい</td>
</tr>
<tr>
<td>特定商取引に基づく表記</td>
<td>次世代育成事業行動計画</td>
<td>経営アドバイス・</td>
</tr>
<tr>
<td>免責事項</td>
<td>女性活躍推進法行動計画</td>
<td>外部評価を受けたい</td>
</tr>
<tr>
<td></td>
<td>採用情報</td>
<td>調査・分析</td>
</tr>
<tr>
<td></td>
<td>お問い合わせ</td>
<td>をしてほしい</td>
</tr>
</tbody>
</table>

掲載記事の無断転載を禁じます。発行：株式会社日刊工業新聞社 Copyright 2017 NIKKAN KOYO SHIMBUN.LTD.